Azərbaycanca AzərbaycancaБеларускі БеларускіDansk DanskDeutsch DeutschEspañola EspañolaFrançais FrançaisIndonesia IndonesiaItaliana Italiana日本語 日本語Қазақ ҚазақLietuvos LietuvosNederlands NederlandsPortuguês PortuguêsРусский Русскийසිංහල සිංහලแบบไทย แบบไทยTürkçe TürkçeУкраїнська Українська中國人 中國人United State United StateAfrikaans Afrikaans
Support
www.wp1.da-dk.nina.az
  • Wikipedia

Mængdelære er den matematiske teori om mængder der repræsenterer mængder af abstrakte objekter Mængdelæren er sammen med

Mængdeteori

Mængdeteori
www.wp1.da-dk.nina.azhttps://www.wp1.da-dk.nina.az

Mængdelære er den matematiske teori om mængder, der repræsenterer mængder af abstrakte objekter. Mængdelæren er sammen med logik grundstenen i næsten al moderne matematik. Mængdelæren gør kun brug af en slags elementer, mængder, og en relation, tilhørsrelationen.

image
Venn-diagram der viser overlap mellem to mængder.

Mængdelæren blev især udviklet i perioden 1880-1920. Georg Cantor definerede de første begreber, Bertrand Russell og David Hilbert bidrog væsentligt til at gøre det til en konsistent teori. Mængdebegrebet defineres af Zermelo-Fraenkels aksiomer, samt som oftest udvalgsaksiomet. Man ser derfor ofte mængdeaksiomerne skrevet som ZFC, hvor C'et står for "axiom of choice". John Venn udviklede Venn-diagrammet til visualisering af relationer og logiske forbindelse mellem mængder, som en videreudvikling af det tidligere Euler-diagram, udviklet af Leonhard Euler.

Som eksempel på hvordan matematik kan udledes af mængdelæren, kan de naturlige tal udtrykkes som mængder. 0 svarer til den tomme mængde, ∅{\displaystyle \emptyset }{\displaystyle \emptyset }, 1 til mængden indeholdende 0, dvs.den tomme mængde, 2 til mængden indeholdende {0,1}, dvs. den tomme mængde og 'mængden indeholdende den tomme mængde'. Hvert tal svarer altså til mængden af alle foregående tal. Dette giver direkte definitionen af at naturligt tals efterfølger, altså til +1. Herefter er det enkelt at aflede +, * og andre funktioner.

Grundlæggende ideer

Mængdelære begynder med en fundamental mellem et objekt o og en mængde A. Hvis o er et element af A, skrives der o ∈ A. Mængder er selv objekter som derfor kan være elementer af andre mængder.

Hvis alle elementer af mængde A også er elementer af mængde B, så er A en delmængde af B, og betegnes A ⊆ B. For eksempel er {1,2} en delmængde af {1,2,3}, men {1,4} er ikke. Fra denne definition kan man konkludere, at enhver mængde er en delmængde af sig selv.

Kilder

  • Beskrivelse af Mængdelære
  • Mængdelære på Lex.dk
imageSpire
Denne artikel om matematik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den.

wikipedia, dansk, wiki, bog, bøger, bibliotek, artikel, læs, download, gratis, gratis download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, billede, musik, sang, film, bog, spil, spil, mobile, Phone, Android, iOS, Apple, mobiltelefon, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, sonya, mi, PC, web, computer

Udgivelsesdato: December 04, 2024, 11:00 am
De fleste læses
  • Kan 14, 2025

    Teknisk anordning

  • Kan 11, 2025

    Teglsten

  • Kan 15, 2025

    TeX

  • Kan 07, 2025

    Teutoner

  • Kan 12, 2025

    Tasiilaq

Daglige
  • Ørkenens Sønner

  • Riget

  • Svend Gønge

  • Gøngehøvdingen (tv-serie)

  • Vikings (tv-serie)

  • Harry (DSB)

  • Søren Pilmark

  • Østrig i Eurovision Song Contest

  • Kurdistans Arbejderparti

  • Natly

NiNa.Az - Studio

  • Wikipedia

Tilmelding af nyhedsbrev

Ved at abonnere på vores mailingliste vil du altid modtage de seneste nyheder fra os.
Kom i kontakt
Kontakt os
DMCA Sitemap Feeds
© 2019 nina.az - Alle rettigheder forbeholdes.
Ophavsret: Dadaş Mammedov
Top