Azərbaycanca AzərbaycancaБеларускі БеларускіDansk DanskDeutsch DeutschEspañola EspañolaFrançais FrançaisIndonesia IndonesiaItaliana Italiana日本語 日本語Қазақ ҚазақLietuvos LietuvosNederlands NederlandsPortuguês PortuguêsРусский Русскийසිංහල සිංහලแบบไทย แบบไทยTürkçe TürkçeУкраїнська Українська中國人 中國人United State United StateAfrikaans Afrikaans
Support
www.wp1.da-dk.nina.az
  • Wikipedia

For alternative betydninger se Sinus Se også artikler som begynder med Sinus Der er for få eller ingen kildehenvisninger

Sinus (matematik)

Sinus (matematik)
www.wp1.da-dk.nina.azhttps://www.wp1.da-dk.nina.az
image For alternative betydninger, se Sinus. (Se også artikler, som begynder med Sinus)
image Der er for få eller ingen kildehenvisninger i denne artikel, hvilket er et problem. Du kan hjælpe ved at angive troværdige kilder til de påstande, som fremføres i artiklen.
image Denne artikel bør gennemlæses af en person med fagkendskab for at sikre den faglige korrekthed.

Sinus er en trigonometrisk funktion inden for matematikken, som beskriver bestemte forhold mellem siderne i en retvinklet trekant, eller y{\displaystyle y}{\displaystyle y}-koordinaten til et punkt på enhedscirklen. I matematiske formler forkortes sinus til sin{\displaystyle \sin }{\displaystyle \sin }, og tager man sinus til en vinkel θ{\displaystyle \theta }{\displaystyle \theta }, skrives det matematisk som sin⁡θ{\displaystyle \sin \theta }{\displaystyle \sin \theta }. Sinus-funktionen har mange træk tilfælles med en anden trigonometrisk funktion, cosinus, som beskriver x{\displaystyle x}{\displaystyle x}-koordinaten til føromtalte punkt på enhedscirklen, og disse to funktioner danner grundlag for den tredje trigonometriske funktion tangens.

Grafen for sinus (og cosinus) udviser et karakteristisk bølgemønster, som kan bruges til at modellere en lang række fysiske fænomener.

Sinus og den retvinklede trekant

image
Sider og vinkler i en retvinklet trekant

For en retvinklet trekant gælder, at sinus til en af de to vinkler, der ikke er rette, er lig med forholdet mellem den modstående katete og trekantens hypotenuse. For trekanten, på illustrationen til højre gælder, at sinus til den vinkel "θ", der er markeret med gul farve, er lig med forholdet mellem længderne af siderne "a" og "c", dvs.:
sin⁡θ=ac{\displaystyle \sin \theta ={\frac {a}{c}}}image

Selv om denne definition bygger på en retvinklet trekant, bruges sinus-funktionen i beregninger over alle mulige trekanter i planen, med eller uden rette vinkler – bl.a. i den såkaldte sinusrelation.

Sinus i enhedscirklen

image
Sinus giver y-koordinaten til et punkt på enhedscirklen

Definitionen med den retvinklede trekant kan redegøre for sinus til vinkler mellem 0 og 90 grader, men ved hjælp af enhedscirklen kan man udvide definitionsmængden til sinus til alle reelle tal.

På Illustrationen til højre ses enhedscirklen, hvori er indtegnet nogle centervinkler hvis ene ben falder sammen med x-aksen (i pilens retning). Det andet ben skærer cirklens periferi i et punkt, hvis y-koordinat (markeret med små kvadrater), eller afstand til x-aksen, er lig med sinus til den pågældende centervinkel.

Centervinkler måles med den positive side af x-aksen som »nulpunkt«. Går man »mod uret« når man måler vinklen, regnes denne vinkel positivt, mens vinklen er negativ hvis man »måler medurs«.

Egenskaber

image
Graf over sinus-funktionen

Kurven til højre viser hvordan sinus til en vinkel θ varierer for vinkler mellem ±360° (nederste vandrette skala). Som nævnt er sinus defineret for ethvert reelt tal θ – ud over det viste interval fortsætter kurven i det samme bølge-mønster uendeligt langt til begge sider.
Man kan se at kurven aldrig kommer ud over intervallet fra -1 til 1 på y-aksen: Den såkaldte værdimængde til sinus er netop alle reelle tal fra og med -1 til og med 1.

Sinusfunktionen (for vinkler givet i buemål, mere herom senere) er kontinuert og differentiabel: Stamfunktionen, eller det ubestemte integral, til sin v er -cos v, og den afledede funktion af sin v er cos v.

Vinkelmål

Det tal man i praktiske beregninger tager sinus af, repræsenterer så godt som altid en vinkel, eventuelt en såkaldt fasevinkel – af den grund skal man, når man beregner sinus, være sikker på hvilken måleenhed vinklen er opgivet i. I teoretisk arbejde, f.eks. matematiske og fysiske beregninger, bruges den lidt specielle enhed radian; vinklens buemål eller »naturlige vinkelmål«, med mindre andet udtrykkeligt er angivet. I toppen af grafen ovenfor er indsat en skala der angiver vinklen udtrykt i radianer.
I andre, mere praktisk orienterede sammenhænge, findes en række forskellige måleenheder – kategorien vinkelenheder giver en oversigt over artikler om relevante måleenheder.
Matematiske lommeregnere har almindeligvis en tast og nogle små bogstaver i displayet til at vælge mellem »D« for »almindelige« grader, »G« for såkaldte nygrader og »R« for førnævnte radianer: Man skal have valgt det rigtige mål inden man trykker på en trigonometrisk funktion.

Sinus til visse vinkler

Vinkel a sin a
Grader Radianer Nygrader Eksakt Decimalbrøk
0° 0 0g 0 0
180° π{\displaystyle \pi }image 200g
15° π12{\displaystyle {\frac {\pi }{12}}}image 16 2/3g 6−24{\displaystyle {\frac {{\sqrt {6}}-{\sqrt {2}}}{4}}}image 0,258819045102521
165° 11⋅π12{\displaystyle {\frac {11\cdot \pi }{12}}}image 183 1/3g
30° π6{\displaystyle {\frac {\pi }{6}}}image 33 1/3g 12{\displaystyle {\frac {1}{2}}}image 0,5
150° 5⋅π6{\displaystyle {\frac {5\cdot \pi }{6}}}image 166 2/3g
45° π4{\displaystyle {\frac {\pi }{4}}}image 50g 12{\displaystyle {\sqrt {\frac {1}{2}}}}image 0,707106781186548
135° 3⋅π4{\displaystyle {\frac {3\cdot \pi }{4}}}image 150g
60° π3{\displaystyle {\frac {\pi }{3}}}image 66 2/3g 32{\displaystyle {\frac {\sqrt {3}}{2}}}image 0,866025403784439
120° 2⋅π3{\displaystyle {\frac {2\cdot \pi }{3}}}image 133 1/3g
75° 5⋅π12{\displaystyle {\frac {5\cdot \pi }{12}}}image 83 1/3g 6+24{\displaystyle {\frac {{\sqrt {6}}+{\sqrt {2}}}{4}}}image 0,965925826289068
105° 7⋅π12{\displaystyle {\frac {7\cdot \pi }{12}}}image 116 2/3g
90° π2{\displaystyle {\frac {\pi }{2}}}image 100g 1 1

For nogle få, »specielle« vinkler kan man ad geometrisk vej finde frem til eksakte værdier for sinus til disse vinkler. Tabellen til højre giver et overblik.

Ved at studere illustrationen med enhedscirklen kan man slutte sig til, at hvis man måler en vis vinkel enten med- eller modurs (hhv. en negativ og en positiv vinkel) ud fra x-aksen, får man et skæringspunkt der ligger hhv. under eller over x aksen. Men afstanden fra hver disse to punkter ind til x-aksen er den samme.
Matematisk gælder, at:
sin x = -sin -x
For tabellen til højre betyder dette, at hvis sinus til f.eks. 30° er 0,5, så er sinus til -30° lig med -0,5.

Endvidere gælder, at eftersom sinus er periodisk, er sin x = sin (x + n·360°) hhv. sin x = sin (x + n·2·π) hhv. sin x = sin (x + n·400g), hvor n er et helt tal.

Invers sinus

Hvis man »indskrænker« definitionsmængden for sinus til intervallet fra -90° til 90° (-100 til 100 nygrader eller -π/2 til π/2 radianer), får man en såkaldt eller »én-til-én-tydig« funktion, og til sådanne funktioner kan opstilles en såkaldt invers funktion, som populært sagt »regner baglæns« fra sinus til en vinkel og tilbage til vinklen. For sinus' vedkommende kaldes denne inverse funktion for .

Eksterne henvisninger

Online-værktøjer, der udregner siderne og vinklerne på en trekant for dig:

  • CosSinCalc
  • http://carbidedepot.com/formulas-trigright.asp
  • http://www.mathwarehouse.com/triangle-calculator/online.php

Bog

  • Holth, Klaus m.fl. (1987): Matematik Grundbog 1. Forlaget Trip, Vejle. ISBN 87-88049-18-3

Referencer

  1. Holth (1987) s. 56-61


wikipedia, dansk, wiki, bog, bøger, bibliotek, artikel, læs, download, gratis, gratis download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, billede, musik, sang, film, bog, spil, spil, mobile, Phone, Android, iOS, Apple, mobiltelefon, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, sonya, mi, PC, web, computer

Udgivelsesdato: Oktober 15, 2024, 08:20 am
De fleste læses
  • Kan 14, 2025

    Dee (Aberdeenshire)

  • Kan 10, 2025

    Debrecen

  • Kan 09, 2025

    De tolv stammer

  • Kan 15, 2025

    De grajiske Alper

  • Kan 12, 2025

    De Zeven Provinciën-klassen

Daglige
  • Filminstruktør

  • Ørkenens Sønner

  • Kongekabale

  • Søren Pilmark

  • Kartoffelsagen

  • Kurdistans Arbejderparti

  • Tyrkiet

  • Pave Leo 14.

  • Ægte dagsommerfugle

  • Sri Lank

NiNa.Az - Studio

  • Wikipedia

Tilmelding af nyhedsbrev

Ved at abonnere på vores mailingliste vil du altid modtage de seneste nyheder fra os.
Kom i kontakt
Kontakt os
DMCA Sitemap Feeds
© 2019 nina.az - Alle rettigheder forbeholdes.
Ophavsret: Dadaş Mammedov
Top